A Zero Density Estimate for Dedekind Zeta Functions

نویسندگان

چکیده

Abstract Given a nontrivial finite group $G$, we prove the first zero density estimate for families of Dedekind zeta functions associated to Galois extensions $K/{\mathbb {Q}}$ with $\textrm {Gal}(K/{\mathbb {Q}})\cong G$ that does not rely on unproven progress towards strong form Artin’s conjecture. We use this remove hypothesis Artin conjecture from work Pierce, Turnage-Butterbaugh, and Wood average error in Chebotarev theorem $\ell $-torsion ideal class groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An improved upper bound for the error in the zero-counting formulae for Dirichlet L-functions and Dedekind zeta-functions

This paper contains new explicit upper bounds for the number of zeroes of Dirichlet L-functions and Dedekind zeta-functions in rectangles.

متن کامل

Localization of the first zero of the Dedekind zeta function

Using Weil’s explicit formula, we propose a method to compute low zeros of the Dedekind zeta function. As an application of this method, we compute the first zero of the Dedekind zeta function associated to totally complex fields of degree less than or equal to 30 having the smallest known discriminant.

متن کامل

Nonasymptotic Probability Bounds for Fading Channels Exploiting Dedekind Zeta Functions

In this paper, new probability bounds are derived for algebraic lattice codes. This is done by using the Dedekind zeta functions of the algebraic number fields involved in the lattice constructions. In particular, it is shown how to upper bound the error performance of a finite constellation on a Rayleigh fading channel and the probability of an eavesdropper’s correct decision in a wiretap chan...

متن کامل

Dedekind Zeta Functions and the Complexity of Hilbert’s Nullstellensatz

Let HN denote the problem of determining whether a system of multivariate polynomials with integer coefficients has a complex root. It has long been known that HN∈P =⇒ P=NP and, thanks to recent work of Koiran, it is now known that the truth of theGeneralized Riemann Hypothesis (GRH) yields the implication HN 6∈P =⇒ P 6=NP. We show that the assumption of GRH in the latter implication can be rep...

متن کامل

Zeros of Dedekind zeta functions in the critical strip

In this paper, we describe a computation which established the GRH to height 92 (resp. 40) for cubic number fields (resp. quartic number fields) with small discriminant. We use a method due to E. Friedman for computing values of Dedekind zeta functions, we take care of accumulated roundoff error to obtain results which are mathematically rigorous, and we generalize Turing’s criterion to prove t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2022

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnac015